\(\int \frac {(d+e x^2)^2 (a+b \arctan (c x))}{x^6} \, dx\) [1134]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 150 \[ \int \frac {\left (d+e x^2\right )^2 (a+b \arctan (c x))}{x^6} \, dx=-\frac {b c d^2}{20 x^4}+\frac {b c d \left (3 c^2 d-10 e\right )}{30 x^2}-\frac {d^2 (a+b \arctan (c x))}{5 x^5}-\frac {2 d e (a+b \arctan (c x))}{3 x^3}-\frac {e^2 (a+b \arctan (c x))}{x}+\frac {1}{15} b c \left (3 c^4 d^2-10 c^2 d e+15 e^2\right ) \log (x)-\frac {1}{30} b c \left (3 c^4 d^2-10 c^2 d e+15 e^2\right ) \log \left (1+c^2 x^2\right ) \]

[Out]

-1/20*b*c*d^2/x^4+1/30*b*c*d*(3*c^2*d-10*e)/x^2-1/5*d^2*(a+b*arctan(c*x))/x^5-2/3*d*e*(a+b*arctan(c*x))/x^3-e^
2*(a+b*arctan(c*x))/x+1/15*b*c*(3*c^4*d^2-10*c^2*d*e+15*e^2)*ln(x)-1/30*b*c*(3*c^4*d^2-10*c^2*d*e+15*e^2)*ln(c
^2*x^2+1)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {276, 5096, 12, 1265, 907} \[ \int \frac {\left (d+e x^2\right )^2 (a+b \arctan (c x))}{x^6} \, dx=-\frac {d^2 (a+b \arctan (c x))}{5 x^5}-\frac {2 d e (a+b \arctan (c x))}{3 x^3}-\frac {e^2 (a+b \arctan (c x))}{x}+\frac {b c d \left (3 c^2 d-10 e\right )}{30 x^2}-\frac {1}{30} b c \left (3 c^4 d^2-10 c^2 d e+15 e^2\right ) \log \left (c^2 x^2+1\right )+\frac {1}{15} b c \log (x) \left (3 c^4 d^2-10 c^2 d e+15 e^2\right )-\frac {b c d^2}{20 x^4} \]

[In]

Int[((d + e*x^2)^2*(a + b*ArcTan[c*x]))/x^6,x]

[Out]

-1/20*(b*c*d^2)/x^4 + (b*c*d*(3*c^2*d - 10*e))/(30*x^2) - (d^2*(a + b*ArcTan[c*x]))/(5*x^5) - (2*d*e*(a + b*Ar
cTan[c*x]))/(3*x^3) - (e^2*(a + b*ArcTan[c*x]))/x + (b*c*(3*c^4*d^2 - 10*c^2*d*e + 15*e^2)*Log[x])/15 - (b*c*(
3*c^4*d^2 - 10*c^2*d*e + 15*e^2)*Log[1 + c^2*x^2])/30

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 907

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && I
ntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))

Rule 1265

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 5096

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Dist[a + b*ArcTan[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/(1 + c^
2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ((IGtQ[q, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m +
2*q + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[q, 0] && GtQ[m + 2*q + 3, 0])) || (ILtQ[(m + 2*q + 1)/2, 0] &&
  !ILtQ[(m - 1)/2, 0]))

Rubi steps \begin{align*} \text {integral}& = -\frac {d^2 (a+b \arctan (c x))}{5 x^5}-\frac {2 d e (a+b \arctan (c x))}{3 x^3}-\frac {e^2 (a+b \arctan (c x))}{x}-(b c) \int \frac {-3 d^2-10 d e x^2-15 e^2 x^4}{15 x^5 \left (1+c^2 x^2\right )} \, dx \\ & = -\frac {d^2 (a+b \arctan (c x))}{5 x^5}-\frac {2 d e (a+b \arctan (c x))}{3 x^3}-\frac {e^2 (a+b \arctan (c x))}{x}-\frac {1}{15} (b c) \int \frac {-3 d^2-10 d e x^2-15 e^2 x^4}{x^5 \left (1+c^2 x^2\right )} \, dx \\ & = -\frac {d^2 (a+b \arctan (c x))}{5 x^5}-\frac {2 d e (a+b \arctan (c x))}{3 x^3}-\frac {e^2 (a+b \arctan (c x))}{x}-\frac {1}{30} (b c) \text {Subst}\left (\int \frac {-3 d^2-10 d e x-15 e^2 x^2}{x^3 \left (1+c^2 x\right )} \, dx,x,x^2\right ) \\ & = -\frac {d^2 (a+b \arctan (c x))}{5 x^5}-\frac {2 d e (a+b \arctan (c x))}{3 x^3}-\frac {e^2 (a+b \arctan (c x))}{x}-\frac {1}{30} (b c) \text {Subst}\left (\int \left (-\frac {3 d^2}{x^3}+\frac {d \left (3 c^2 d-10 e\right )}{x^2}+\frac {-3 c^4 d^2+10 c^2 d e-15 e^2}{x}+\frac {3 c^6 d^2-10 c^4 d e+15 c^2 e^2}{1+c^2 x}\right ) \, dx,x,x^2\right ) \\ & = -\frac {b c d^2}{20 x^4}+\frac {b c d \left (3 c^2 d-10 e\right )}{30 x^2}-\frac {d^2 (a+b \arctan (c x))}{5 x^5}-\frac {2 d e (a+b \arctan (c x))}{3 x^3}-\frac {e^2 (a+b \arctan (c x))}{x}+\frac {1}{15} b c \left (3 c^4 d^2-10 c^2 d e+15 e^2\right ) \log (x)-\frac {1}{30} b c \left (3 c^4 d^2-10 c^2 d e+15 e^2\right ) \log \left (1+c^2 x^2\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.99 \[ \int \frac {\left (d+e x^2\right )^2 (a+b \arctan (c x))}{x^6} \, dx=\frac {1}{60} \left (-\frac {12 d^2 (a+b \arctan (c x))}{x^5}-\frac {40 d e (a+b \arctan (c x))}{x^3}-\frac {60 e^2 (a+b \arctan (c x))}{x}+30 b c e^2 \left (2 \log (x)-\log \left (1+c^2 x^2\right )\right )-20 b c d e \left (\frac {1}{x^2}+2 c^2 \log (x)-c^2 \log \left (1+c^2 x^2\right )\right )-3 b c d^2 \left (\frac {1}{x^4}-\frac {2 c^2}{x^2}-4 c^4 \log (x)+2 c^4 \log \left (1+c^2 x^2\right )\right )\right ) \]

[In]

Integrate[((d + e*x^2)^2*(a + b*ArcTan[c*x]))/x^6,x]

[Out]

((-12*d^2*(a + b*ArcTan[c*x]))/x^5 - (40*d*e*(a + b*ArcTan[c*x]))/x^3 - (60*e^2*(a + b*ArcTan[c*x]))/x + 30*b*
c*e^2*(2*Log[x] - Log[1 + c^2*x^2]) - 20*b*c*d*e*(x^(-2) + 2*c^2*Log[x] - c^2*Log[1 + c^2*x^2]) - 3*b*c*d^2*(x
^(-4) - (2*c^2)/x^2 - 4*c^4*Log[x] + 2*c^4*Log[1 + c^2*x^2]))/60

Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.11

method result size
parts \(a \left (-\frac {e^{2}}{x}-\frac {2 e d}{3 x^{3}}-\frac {d^{2}}{5 x^{5}}\right )+b \,c^{5} \left (-\frac {\arctan \left (c x \right ) e^{2}}{c^{5} x}-\frac {2 \arctan \left (c x \right ) d e}{3 c^{5} x^{3}}-\frac {\arctan \left (c x \right ) d^{2}}{5 c^{5} x^{5}}-\frac {\left (-3 c^{4} d^{2}+10 c^{2} d e -15 e^{2}\right ) \ln \left (c x \right )-\frac {d \left (3 c^{2} d -10 e \right )}{2 x^{2}}+\frac {3 d^{2}}{4 x^{4}}+\frac {\left (3 c^{4} d^{2}-10 c^{2} d e +15 e^{2}\right ) \ln \left (c^{2} x^{2}+1\right )}{2}}{15 c^{4}}\right )\) \(167\)
derivativedivides \(c^{5} \left (\frac {a \left (-\frac {e^{2}}{c x}-\frac {d^{2}}{5 c \,x^{5}}-\frac {2 d e}{3 c \,x^{3}}\right )}{c^{4}}+\frac {b \left (-\frac {\arctan \left (c x \right ) e^{2}}{c x}-\frac {\arctan \left (c x \right ) d^{2}}{5 c \,x^{5}}-\frac {2 \arctan \left (c x \right ) d e}{3 c \,x^{3}}-\frac {\left (3 c^{4} d^{2}-10 c^{2} d e +15 e^{2}\right ) \ln \left (c^{2} x^{2}+1\right )}{30}-\frac {\left (-3 c^{4} d^{2}+10 c^{2} d e -15 e^{2}\right ) \ln \left (c x \right )}{15}+\frac {d \left (3 c^{2} d -10 e \right )}{30 x^{2}}-\frac {d^{2}}{20 x^{4}}\right )}{c^{4}}\right )\) \(178\)
default \(c^{5} \left (\frac {a \left (-\frac {e^{2}}{c x}-\frac {d^{2}}{5 c \,x^{5}}-\frac {2 d e}{3 c \,x^{3}}\right )}{c^{4}}+\frac {b \left (-\frac {\arctan \left (c x \right ) e^{2}}{c x}-\frac {\arctan \left (c x \right ) d^{2}}{5 c \,x^{5}}-\frac {2 \arctan \left (c x \right ) d e}{3 c \,x^{3}}-\frac {\left (3 c^{4} d^{2}-10 c^{2} d e +15 e^{2}\right ) \ln \left (c^{2} x^{2}+1\right )}{30}-\frac {\left (-3 c^{4} d^{2}+10 c^{2} d e -15 e^{2}\right ) \ln \left (c x \right )}{15}+\frac {d \left (3 c^{2} d -10 e \right )}{30 x^{2}}-\frac {d^{2}}{20 x^{4}}\right )}{c^{4}}\right )\) \(178\)
parallelrisch \(\frac {12 \ln \left (x \right ) b \,c^{5} d^{2} x^{5}-6 \ln \left (c^{2} x^{2}+1\right ) x^{5} b \,c^{5} d^{2}-6 b \,c^{5} d^{2} x^{5}-40 \ln \left (x \right ) b \,c^{3} d e \,x^{5}+20 \ln \left (c^{2} x^{2}+1\right ) x^{5} b \,c^{3} d e +20 b \,c^{3} d e \,x^{5}+60 \ln \left (x \right ) b c \,e^{2} x^{5}-30 \ln \left (c^{2} x^{2}+1\right ) x^{5} b c \,e^{2}+6 x^{3} b \,c^{3} d^{2}-60 x^{4} \arctan \left (c x \right ) b \,e^{2}-60 a \,e^{2} x^{4}-20 b c e d \,x^{3}-40 x^{2} \arctan \left (c x \right ) b d e -40 a d e \,x^{2}-3 b c \,d^{2} x -12 b \,d^{2} \arctan \left (c x \right )-12 d^{2} a}{60 x^{5}}\) \(219\)
risch \(\frac {i b \left (15 x^{4} e^{2}+10 x^{2} e d +3 d^{2}\right ) \ln \left (i c x +1\right )}{30 x^{5}}-\frac {-12 \ln \left (x \right ) b \,c^{5} d^{2} x^{5}+6 \ln \left (-c^{2} x^{2}-1\right ) b \,c^{5} d^{2} x^{5}+40 \ln \left (x \right ) b \,c^{3} d e \,x^{5}-20 \ln \left (-c^{2} x^{2}-1\right ) b \,c^{3} d e \,x^{5}-60 \ln \left (x \right ) b c \,e^{2} x^{5}+30 \ln \left (-c^{2} x^{2}-1\right ) b c \,e^{2} x^{5}+30 i b \,e^{2} \ln \left (-i c x +1\right ) x^{4}-6 x^{3} b \,c^{3} d^{2}+20 i b d e \ln \left (-i c x +1\right ) x^{2}+60 a \,e^{2} x^{4}+20 b c e d \,x^{3}+6 i b \,d^{2} \ln \left (-i c x +1\right )+40 a d e \,x^{2}+3 b c \,d^{2} x +12 d^{2} a}{60 x^{5}}\) \(251\)

[In]

int((e*x^2+d)^2*(a+b*arctan(c*x))/x^6,x,method=_RETURNVERBOSE)

[Out]

a*(-e^2/x-2/3*e*d/x^3-1/5*d^2/x^5)+b*c^5*(-arctan(c*x)/c^5*e^2/x-2/3*arctan(c*x)/c^5*d*e/x^3-1/5*arctan(c*x)*d
^2/c^5/x^5-1/15/c^4*((-3*c^4*d^2+10*c^2*d*e-15*e^2)*ln(c*x)-1/2*d*(3*c^2*d-10*e)/x^2+3/4*d^2/x^4+1/2*(3*c^4*d^
2-10*c^2*d*e+15*e^2)*ln(c^2*x^2+1)))

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.07 \[ \int \frac {\left (d+e x^2\right )^2 (a+b \arctan (c x))}{x^6} \, dx=-\frac {60 \, a e^{2} x^{4} + 2 \, {\left (3 \, b c^{5} d^{2} - 10 \, b c^{3} d e + 15 \, b c e^{2}\right )} x^{5} \log \left (c^{2} x^{2} + 1\right ) - 4 \, {\left (3 \, b c^{5} d^{2} - 10 \, b c^{3} d e + 15 \, b c e^{2}\right )} x^{5} \log \left (x\right ) + 3 \, b c d^{2} x + 40 \, a d e x^{2} - 2 \, {\left (3 \, b c^{3} d^{2} - 10 \, b c d e\right )} x^{3} + 12 \, a d^{2} + 4 \, {\left (15 \, b e^{2} x^{4} + 10 \, b d e x^{2} + 3 \, b d^{2}\right )} \arctan \left (c x\right )}{60 \, x^{5}} \]

[In]

integrate((e*x^2+d)^2*(a+b*arctan(c*x))/x^6,x, algorithm="fricas")

[Out]

-1/60*(60*a*e^2*x^4 + 2*(3*b*c^5*d^2 - 10*b*c^3*d*e + 15*b*c*e^2)*x^5*log(c^2*x^2 + 1) - 4*(3*b*c^5*d^2 - 10*b
*c^3*d*e + 15*b*c*e^2)*x^5*log(x) + 3*b*c*d^2*x + 40*a*d*e*x^2 - 2*(3*b*c^3*d^2 - 10*b*c*d*e)*x^3 + 12*a*d^2 +
 4*(15*b*e^2*x^4 + 10*b*d*e*x^2 + 3*b*d^2)*arctan(c*x))/x^5

Sympy [A] (verification not implemented)

Time = 0.55 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.57 \[ \int \frac {\left (d+e x^2\right )^2 (a+b \arctan (c x))}{x^6} \, dx=\begin {cases} - \frac {a d^{2}}{5 x^{5}} - \frac {2 a d e}{3 x^{3}} - \frac {a e^{2}}{x} + \frac {b c^{5} d^{2} \log {\left (x \right )}}{5} - \frac {b c^{5} d^{2} \log {\left (x^{2} + \frac {1}{c^{2}} \right )}}{10} + \frac {b c^{3} d^{2}}{10 x^{2}} - \frac {2 b c^{3} d e \log {\left (x \right )}}{3} + \frac {b c^{3} d e \log {\left (x^{2} + \frac {1}{c^{2}} \right )}}{3} - \frac {b c d^{2}}{20 x^{4}} - \frac {b c d e}{3 x^{2}} + b c e^{2} \log {\left (x \right )} - \frac {b c e^{2} \log {\left (x^{2} + \frac {1}{c^{2}} \right )}}{2} - \frac {b d^{2} \operatorname {atan}{\left (c x \right )}}{5 x^{5}} - \frac {2 b d e \operatorname {atan}{\left (c x \right )}}{3 x^{3}} - \frac {b e^{2} \operatorname {atan}{\left (c x \right )}}{x} & \text {for}\: c \neq 0 \\a \left (- \frac {d^{2}}{5 x^{5}} - \frac {2 d e}{3 x^{3}} - \frac {e^{2}}{x}\right ) & \text {otherwise} \end {cases} \]

[In]

integrate((e*x**2+d)**2*(a+b*atan(c*x))/x**6,x)

[Out]

Piecewise((-a*d**2/(5*x**5) - 2*a*d*e/(3*x**3) - a*e**2/x + b*c**5*d**2*log(x)/5 - b*c**5*d**2*log(x**2 + c**(
-2))/10 + b*c**3*d**2/(10*x**2) - 2*b*c**3*d*e*log(x)/3 + b*c**3*d*e*log(x**2 + c**(-2))/3 - b*c*d**2/(20*x**4
) - b*c*d*e/(3*x**2) + b*c*e**2*log(x) - b*c*e**2*log(x**2 + c**(-2))/2 - b*d**2*atan(c*x)/(5*x**5) - 2*b*d*e*
atan(c*x)/(3*x**3) - b*e**2*atan(c*x)/x, Ne(c, 0)), (a*(-d**2/(5*x**5) - 2*d*e/(3*x**3) - e**2/x), True))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.11 \[ \int \frac {\left (d+e x^2\right )^2 (a+b \arctan (c x))}{x^6} \, dx=-\frac {1}{20} \, {\left ({\left (2 \, c^{4} \log \left (c^{2} x^{2} + 1\right ) - 2 \, c^{4} \log \left (x^{2}\right ) - \frac {2 \, c^{2} x^{2} - 1}{x^{4}}\right )} c + \frac {4 \, \arctan \left (c x\right )}{x^{5}}\right )} b d^{2} + \frac {1}{3} \, {\left ({\left (c^{2} \log \left (c^{2} x^{2} + 1\right ) - c^{2} \log \left (x^{2}\right ) - \frac {1}{x^{2}}\right )} c - \frac {2 \, \arctan \left (c x\right )}{x^{3}}\right )} b d e - \frac {1}{2} \, {\left (c {\left (\log \left (c^{2} x^{2} + 1\right ) - \log \left (x^{2}\right )\right )} + \frac {2 \, \arctan \left (c x\right )}{x}\right )} b e^{2} - \frac {a e^{2}}{x} - \frac {2 \, a d e}{3 \, x^{3}} - \frac {a d^{2}}{5 \, x^{5}} \]

[In]

integrate((e*x^2+d)^2*(a+b*arctan(c*x))/x^6,x, algorithm="maxima")

[Out]

-1/20*((2*c^4*log(c^2*x^2 + 1) - 2*c^4*log(x^2) - (2*c^2*x^2 - 1)/x^4)*c + 4*arctan(c*x)/x^5)*b*d^2 + 1/3*((c^
2*log(c^2*x^2 + 1) - c^2*log(x^2) - 1/x^2)*c - 2*arctan(c*x)/x^3)*b*d*e - 1/2*(c*(log(c^2*x^2 + 1) - log(x^2))
 + 2*arctan(c*x)/x)*b*e^2 - a*e^2/x - 2/3*a*d*e/x^3 - 1/5*a*d^2/x^5

Giac [F]

\[ \int \frac {\left (d+e x^2\right )^2 (a+b \arctan (c x))}{x^6} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{2} {\left (b \arctan \left (c x\right ) + a\right )}}{x^{6}} \,d x } \]

[In]

integrate((e*x^2+d)^2*(a+b*arctan(c*x))/x^6,x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 0.52 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.19 \[ \int \frac {\left (d+e x^2\right )^2 (a+b \arctan (c x))}{x^6} \, dx=\frac {b\,c^3\,d^2}{10\,x^2}-\frac {a\,e^2}{x}-\frac {b\,c^5\,d^2\,\ln \left (c^2\,x^2+1\right )}{10}-\frac {a\,d^2}{5\,x^5}+\frac {b\,c^5\,d^2\,\ln \left (x\right )}{5}-\frac {2\,a\,d\,e}{3\,x^3}-\frac {b\,c\,e^2\,\ln \left (c^2\,x^2+1\right )}{2}-\frac {b\,c\,d^2}{20\,x^4}+b\,c\,e^2\,\ln \left (x\right )-\frac {b\,d^2\,\mathrm {atan}\left (c\,x\right )}{5\,x^5}-\frac {b\,e^2\,\mathrm {atan}\left (c\,x\right )}{x}+\frac {b\,c^3\,d\,e\,\ln \left (c^2\,x^2+1\right )}{3}-\frac {2\,b\,c^3\,d\,e\,\ln \left (x\right )}{3}-\frac {b\,c\,d\,e}{3\,x^2}-\frac {2\,b\,d\,e\,\mathrm {atan}\left (c\,x\right )}{3\,x^3} \]

[In]

int(((a + b*atan(c*x))*(d + e*x^2)^2)/x^6,x)

[Out]

(b*c^3*d^2)/(10*x^2) - (a*e^2)/x - (b*c^5*d^2*log(c^2*x^2 + 1))/10 - (a*d^2)/(5*x^5) + (b*c^5*d^2*log(x))/5 -
(2*a*d*e)/(3*x^3) - (b*c*e^2*log(c^2*x^2 + 1))/2 - (b*c*d^2)/(20*x^4) + b*c*e^2*log(x) - (b*d^2*atan(c*x))/(5*
x^5) - (b*e^2*atan(c*x))/x + (b*c^3*d*e*log(c^2*x^2 + 1))/3 - (2*b*c^3*d*e*log(x))/3 - (b*c*d*e)/(3*x^2) - (2*
b*d*e*atan(c*x))/(3*x^3)